
Preprint
UCRL-JC-149277

US. Department of Energy

Laboratory

Efficient Computation of
the Topology of Level Sets

V. Pascucci, K. Cole-McLaughlin

This article was submitted to
Institute for Electrical and Electronics Engineers Visualization 2002,
Boston, Massachusetts, October 27 - November 1,2002

July 19,2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doe.Pov/bridg

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: rePo rtsaado nis .os ti. vov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: prders&tis .fedworld. ~ o v
Online ordering: h&:/ /www.ntis.rov/ordedng.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/ tid/Library.html

http://www.llnl.gov

(b) The Augincnted Con
tgalogy of thc isosu

' W

(c)-dm@

J h

ergy between two molecules is a scalar field defined over a six di-
mensional configuration space. The six dimensions are the three
translational and the three rotational degrees of freedom of the rel-
ative positions of the two molecules. The level sets of the field
represent all the coniigurations which are energetically equivalent.

The domain of a scalar field is typically a geometric mesh and
the field is provided by associating each vertex in the mesh with a
sampled scalar value. If the mesh is a simplicial complex then a
piecewise linear function is naturally defined by interpolating lin-
early, within each simplex, the scalar values at the vertices. If the
mesh is a rectilinear grid then a piecewise hilinear function is natu-
rally defined by interpolating, within each cell, the scalar values at
the vertices.

The Contour Tree is a data structure that represents the relations
between the connected components of the level sets in a scalar field.
N o connected components that merge together (as one continu-
ously changes the isovalue) are represented as two arcs that join at
a node of the tree. The pre-computation of the Contour Tree allows
one to collect structural information relative to the iswontours of
the field. This can be used for example to speed up the computation
of isosurfaces by computing seed sets over the contour tree data
structure as in [ll]. The display [l] of the Contour Tree provides
the user with direct insight into the topology of the field and reduces
the user interaction time necessary to "understand" the structure of
the data. Figure 1 shows an example of how information can be
extracted from the Contour Tree display.

The h t efficient technique for Contour Tree computation in 2D
was introduced by de Berg and van Kreveld in [5]. The algorithm
proposed has O(n1og n) complexity. A simplified version, with
same complexity in 2D and O(m2) complexity in higher dimen-
sions, was proposed by van Kreveld et al. in [ll]. This new ap-
proach is also used as a preprocessing step for an optimal isocon-
touring algorithm. It computes a small seed set from which any
contour can be tracked in optimal running time. The approach has
been improved by Tarasov and Vyalyi [lo] achieving O(m1og m)
complexity in the 3D case by a three pass mechanism that allows
one to resolve the different types of criticalities. Recently Cam,
Snoeyink and Axen [3] presented and elegant extension to any di-
mension based on a two pass scheme that builds a join-tree and a
split-tree that are merged into a unique Contour Tree. The approach
achieves O(m + n log n) time complexity.

One fundamental limitation of the basic Contour Tree is the lack
of additional information regarding the topology of the contours. In
high pressure chemical simulations [9] hydrogen bonds between the
atoms caunot be represented in a traditional way, but can be char-
acterized by isosurfaces of potential fields. The Contour Tree pro-
vides important information regarding the clustering of atoms into
molecules but fails to discriminate between linear chains and closed
rings (or more complex structures) which have different physical
behaviors. In [8] we introduced the first efficient algorithm for the
computation of the Betti numbers of all the level sets of a scalar
field in O(m log m) time.
The first part of this paper introduces an extension of the algo-

rithm in [31 that allows one to add the Betti numbers of each con-
tour while maintaining the simplicity of the scheme and the efficient
O(m + n log n) time complexity.
The second part of this paper introduces a new divide and con-

quer scheme for the computation of the Contour Tree. The basic
idea is to compute mergdsplit-trees by combining recursively the
same trees computed for two halves of the mesh. This approach al-
lows one to achieve better modularity by confining any knowledge
of a specific interpolant to an oracle that computes the tree for a
single cell (in the appendix we report the oracle for the trilinear in-
terpolant). In our analysis of the scheme for the case of rectilinear
grids (m = e(n)) we show a time complexity of O(n + t log n),
where t is the number of critical points in the field

The algorithm is also easy to parallelize. We report running
times for a parallel implementation, showing good scalabiity with
the number of processors.

2 The Contour Tree
Consider a scalar field 3 defined as a pair (f, M), where f is a
real valued function and M is the domain of f. In the following
two sections the domain M is assumed to be a simplicial complex
with n vertices and m cells. In Section 5 the domain M is assumed
to be a rectilinear grid. Within each simplex of M the function f is
the linear interpolation of its values at the vertices (trilinear for grid
cells). In other words the field 3 is completely defined by the mesh
M = {VI,. . . , v,,} and the set of scalar values {fl, . . . , f,,} where
fi = f (ui) . Since M is connected (or processed one connected
component at a time) the range of f is a simple closed interval
r = [fmin, fmoz] where fmin = min {fi , . . . , fn} and fmoz =
max(f1,. . . , fn}.

For simplicity of presentation M is also assumed to be homeo-
morphic to a 3-ball. One fundamental way to study the field 3 is
to extract its level sets. For a given scalar z the level set L(z) is
dehed as the inverse image of z onto M through f:

L(z) = f-'(z).

We call each connected component of the level set L(z) a con-
tour. One aspect that is well understood in Morse theory [7] is
the evolution of the homology classes of the contours of 3 while
x changes continuously in r. The points at which the topology of
a contour changes are called critical points and the corresponding
function values are called critical values. The critical points are
usually assumed to be isolated. This assumption is not satisfied in
general but can be enforced by small (symbolic) perhubations of
the function values {fl, . . . , f,,} as discussed in Section 3.

Here this perturbation procedure is weakened by simply assum-
ing that the function values { f1, . . . , f,,} are sorted from the small-
est to the largest so that i < j =+ fi < fj. This can be enforced
with an O(n log n) preprocessing step. In the following the order
of the fi is used to resolve non-isolated criticalities.

We follow the notation of [3] and define the Contour Tree (CT)
as a tree whose vertices are associated with a function value fi and
whose connectivity represents the relation among the contours of
3 as follows.

0 Each leaf of CT represents a local extremum where a con-
tour is created or destroyed, for continuous changes of z. The
function value of the extremum is associated with the leaf
node of CT.

0 Each interior vertex of CT represents the merging d o r
splitting of two or more contours for continuous changes of
x. The function value at which a splitlmerge occurs is associ-
ated with the no&.

0 Each arc of CT represents a contour that remains isolated for
values of z ranging between the function values associated
with the end nodes of the arc.

Figure 2 shows a 2D scalar field with the associated Contour
Tree. Note that the Contour Tree is not a complete Morse graph
of F since the topological changes of a single contour are not
recorded. A more intuitive way to characterize the Contour Tree
is the following informal definition:

The Contour Tree of 3 is the graph obtained by contin-
uous contraction of each contour of 3 to a single point.
Adjacent contours are contracted to adjacent points.
Distinct contours are contracted to distinct points.

'

CT can be done directly during the construction of the JT and of
the ST. This makes the algorithm slightly more complicated but
has the advantage of reducing the size of the intermediate storage.

This last stage of the algorithm has O(n) complexity. Overall the
algorithm for constructing the CT has O(m + n log n) complexity,
since t is never greater than n.

4 Betti Numbers Computation
This section introduces a m c a t i o n to the function ContourTree
that provides a more detailed characterization of the contours of a
scalar field. The output generated by the modified function is the
Augmented Contour Tree (ACT), as defined in [8], which has a
triple (Bo, P I , P 2) of Betti numbers associated to each arc of the
tree. The k-th Betti number P k of a simplicial complex is the rank
of its k-dimensional homology group. We restrict our attention to
level sets of 3D scalar fields, which are 2-dimensional complexes.
In this case only the first three Betti numbers may be non-zero.
Their intuitive interpretation is as follows: is the number of con-
nected components, is the number of independent tunnels, and
$2 is the number of voids enclosed by the surface.

Figure 3(a) shows the minimal CT for a simple scalar field that
has one minimum at isovalue x = 0. The level set f-'(o) is a
single contour coincident with the boundary of the mesh (on the
bottom left). As the isovalue is continuously increased, the level
set splits into four contours at isovalue x = 2 (on the middle left).
Each contour shrinks to a single point and disappears at the maxi-
mum isovalue x = 4 (on the top left). Figure 3(b) shows the mini-
mal ACT for the same scalar field. The added information allows
the user to observe that the level set at the minimum is topologically
a sphere (Po = 1,& = 0, = 1) which tums into a toroidal con-
tour (Bo = 1, = 1) at isovalue x = 1.2. The toroidal
contour then splits into four components each being a topological
Sphere.

In general the ACT has the same structure of the CT since it has
the same nodes of degree not equal to two (extrema and mergdsplit
points) and the same connectivity among them. The main differ-
encebetween the two trees is that the CT, inits minimal form, has
no nodes of degree two. In contrast the ACT requires degree two
nodes at the isovalues where a contour changes its topology with-
out splitting or merging. Because of these added nodes, each arc
of the ACT is associated with a family of contours that are homo-
logically equivalent and hence qualified by the same set of Betti
numbem. Moreover the contours associated with an arc contain no
critical points and the Betti numbers are restricted as follows: (i)

is always 1, (ii) $2 is 0 for surfaces with boundary (open) and
is 1 for surfaces without boundary (closed). Once and Pz are
determined we can compute the value of using its relationship
with the Euler characteristic x:

= 2,

x = B o - P 1 + P 2 . (1)

Given a triangulated surface, the Euler number x is defined as the
number of vertices minus the number of edges plus the number of
faces. In addition to computing the Euler number, for each contour
we count the number of boundary edges (be). In this way we can
determine 82 by checking if be > 0 and then use (1) to compute
$1 =Bo +& - x .

In a preliminary stage we compute, for each vertex u, the in-
formation necessary to &tennine the difference between the Euler
number of the level set L(f(u) + e) and the Euler number of the
level set L(f(u) - e) where E > 0 is an arbitrarily small number
(remember that f (u) = f(w) implies u = w). Figure 4 shows
two such level sets for a 2D scalar field The vertices with function
value greater than f (u) are marked @ and the vertices with func-
tion value smaller than f (u) are marked e. Any simplex containing

I I t
(a) (b)

Figure 4 Comparison between two level sets (isolines in gray) of
a 2D scalar field. (a) shows an isoline of isovalue f (u) - e. (b)
shows an isoline of isovalue f (u) + e. The difference between
combinatorial structure of the two isolines is confined within the
star of simplices incident to u.

both vertices of type @ and vertices of type e give the same con-
tribution to the Euler numbers of the two contours and hence are
not considered. The only simplices that are relevant are those con-
taining u and only vertices of type e or those containing u and only
vertices of type @. We call the lower star of u the set of simplices of
the first type (u, e,. . . , e) and the upper star the set of simplices
of the second type (u, @, . . . , @). For both stars we compute the
respective Euler numbers LS and US (number of vertices minus
number of edges plus number of triangles minus number of tetra-
hedra). We also count the difference Abe between the boundary
edges of L(f(u) - e) and L(f(u) + e). This is summafized in the
following algorithm.

LUStars(uertices, edges, triangles, tetrahedra)
1 fori = 0 ton - 1 do:
2 Lsi=usi=1
3 Abei=O
4 for each edge (u;, uj) with i < j do :
5 L S j t L S j - 1
6 U S i t U S i - 1
7 forePchtrian%e(ui,uj,uk)~thi< j < k d o :
8 L S k t L S k + 1
9 usitusi+1

10 if (vi, U j , U k) is a boundary triangle then:
11 A b e k t A b e k - 1
12 AbejtAbei+1
11 for each tetrahedron (uj, uj, u ~ , 81) with i < j < k < 1 do :
12 LSl t LS1-1

14 return(L.9, US, Abe)
13 USi t US;-1

From a CT that contains all the nodes we build the correspond-
ing ACT. We call xij the Euler number of the contour associated
with the arc i j of the CT. For any fixed i the summation xij ,
with j < i, is the sum of the Euler numbers of the contours of
L(f(ui) -e) which intersect the star of ui. Similarly we denote by
bei j the number of boundary edges of the contour associated with
the arc ij.

We consider, at a generic node i, the relation between LSi, USi
and the Euler numbers of the contours associated with the arcs in-
cident to i. In particular each edge, triangle and tetrahedron in the
lower star of ui produces one vertex, edge and face, respectively,
in some contour of L(f(ui) - E) . In the same way each edge, tri-
angle and tetrahedron in the upper star of ui produces one vertex,
edge and face, respectively, in some contour of L(f(ui) +e). Since
these two terms are the only difference between the Euler numbers
of L(f(ui) - e) and of L(f(ui) + e) we can write:

the explicit formula xij = LSi - US; + xi, if j > i, or with the
explicit formula xij = USi - LSi - xi , if j < i. The node i and
the arc i j are then removed from CT invalidating the jth equation
of (2) since the term xij is no longer present. We restore its cor-
rectness by adding the value of xij to x j , if j > i (or subtracting
if j < i). Thus, after each iteration the CT is reduced by an arc,
while the systems (2) and (3) remain true.

At the end of the loop the tree CT has no arcs and all the terms
0 xij and beij are computed.

Complexity. The complexity of the procedure LUStars is
O(m) while the complexity of AugmentedContourTree and Bet-
tiNumbers is O(n). Overall the computation of the ACT with the
Betti numbers remains O(m + n log n). This is an improvement
over the previous O(m1og m) achieved in [SI since m can be as
big as O(n2).

5 Divide and Conquer for Rectilinear
Grids

This section introduces a new way to compute the JT and the ST
using a divide and conquer strategy. We restrict our analysis to the
case of scalar fields F = (f, M) where M is a rectilinear mesh of
dimensions ntzz x nu x nz . This is the type of mesh that typically has
the largest number of vertices (i.e. the type used in the largest simu-
lations or generated by high resolution W C T scanning devices).
In t h i s case the function f is dehed within each cell as the trilinear
interpolation of the field values at the eight vertices. In t h i s frame-
work we cannot use the algorithm ContourTree since it assumes
properties that are specific to a piecewise linear interpolant. For ex-
ample, the triliear interpolant admits critical points in the interior
of a cell, a condition not allowed by ContourTree. Triangulating
the cells of the grid is usually not an option for large data-sets espe-
cially because the same topology cannot be reproduced in general
unless several more vertices are added to each cell of the mesh.

Our approach overcomes this problem by assuming an oracle
OradeJT(F, M) that returns the JT of 7 if M is a single cell.
We have implemented such an oracle for the trilinear interpolant
on a cube (see Appendix). To extend the scheme to data-sets with
other types of interpolants, for example a triquadratic interpolant,
requires only to replace the function OracleJT. OracleST(F, M)
is simply OradeJT(-F, M).

Recursive algorithm. The algorithm has the same structure of
a merge sort scheme with the added feature that non-critical ver-
tices are removed as soon as possible. This removal provides an
output sensitive character to the algorithm that improves both its
time complexity and its space complexity.

RecursiveJT(F, M)
1 if Dirnensions(M) = (2,2,2) then
2 returnOradeJT(F,M)
3 [M1,M2] t Split (M)
4 JTi t R e c u r s i d (F,Mi)
5 JT2 t R e ~ ~ r s i d (7, M2)
6 JT t MergeJT(JT1, JT2)
7 return Redu~e(JT)

The function Split (M) divides in constant time the domain of
the mesh into two approximately equal meshes MI and M2. In
particular if M has size (n2, nu,ns), with n2 2 ny 2 ns, then
MI has size (n;,ny,n,) and M 2 has size (ng,ny,nz), where
n; = [nz/21 and n: = n2 + 1 - n;.

Tree merging. The routine MergeJT below combines the join
trees of the two halves of the mesh using a UnionFind data-structure
in the same way the routine JoinTree computes the global JT from
the edges of the mesh. ' h o key differences need to be highlighted:

0 MergeJT sorts the input nodes in linear time since JT1 and
JT2 have their nodes already sorted. In particular one linear
scan through the input trees sorts the nodes and at the same
time merges the duplicate nodes, which correspond to ver-
tices on the surface MI n M2. This task is performed by
MergeNodesSorted which also retums the total number of
distinct nodes.

0 MergeJT copies verbatim into JT the independent portions
of JT1 and of JT2. The
UnionFhd data-structure is used starting at the nodes that
correspond to local minima of the scalar field restricted to
M I n M 2 (71MlnMz). The test for minima is performed
by IsMin in constant time.

This is done in linear time.

MergeJT(JT1, JT2)
1 JT= NewTree()
2 uF= NewUFO
3 k t MergeNodesSorted(JT1, JT2))
4 foreachnodei = 0 tok - 1 do:
5 AddNode(JT, i)
6
7
8 i' t Find(UF,i)
9 j' t Find(UF,j)

10
11 Union(UF, i', j')
12 returnJT

if IsMin(FIMlnM1, i) then NewSet(CP, i)
for each edge v;vj with j < i do:

if j' # i' then AddArc(JT, i', j ')

Let n be the number of vertices of M1 and M2, k be the
number of nodes of JT1, JT2 and t be the number of the min-
ima of F ~ M ~ ~ M ~ . The complexity of MergeJT is O(n213 +
k + t logt) . Since t = O(n213) we can rewrite the complexity
as 0 (~ 2 / 3 log + k).
ACT Reduction. As shown in section 4, Reduce can test if a
point i is non-critical simply by looking at LS; and USi. In th is
context IsRegular performs the same combinatorial test modified
for the interpolant used by OracleJT. Note that the last call to Re-
duce should be modified to not check Islnterior, so that all of the
non-critical points are removed. 0t.krwise non-critical points on
the boundary of the mesh would remain in ACT.

Reduce(ACT)
1 fori=Otondo:
2 if Islnterior(i) and IsRegular(i)
3 DelNode(ACT,i)

Complexity. To determine the complexity of R e c u r s i d we
analyze separately the cost of dealing with the interior critical
points and the cost of dealing with the boundaries that are ar-
tificially introduce by the subdivision process and removed by
MergeJT.

We assume that n is the number of cells of M and that Split ~XU-
titions M into two equal halves of size n/2. Therefore the number
of levels in the recursion tree of R e c u r s i d is log n.

The function OradeJT, which takes constant time, is invoked
exactly n times (once per cell), accounting for a e(n) time com-
plexity.

As the sub-meshes are merged together boundary points become
interior points. In particular every point is processed by Reduce in
constant time. Moreover any point that fails the test IsRegular is
also processed in constant time by MergeJT at every level of the
recursion. If 3 has t critical points we spend O(n + t log n) time
to find and process them.
To analyze the cost of dealing with the boundaries we apply

the master theorem of recursive functions reported on page 62
of [4]. The theorem allows one to determine the complexity of
a function T (n) on the basis of the recurrence formula T (n) =
2T(n/2) + f(n) and the complexity of the function f (n). In this
case T (n) is the complexity of our recursive algorithm and f(n) is
the complexity of MergeJT with reference to the boundary points
only (the other points have already been accounted for). As dis-
cussed earlier the highest cost in MergeJT is due to the Union-
Find, which we have set conservatively to O(n21310gn). This
means that f (n) has complexity O(n'-') for some e and hence
T (n) = e(n). In conclusion the complexity of RecursiveST is
O(n + t log n For practical cases where t is less than linear we
have t = O(n'") which means the overall complexity is O(n).

For the case of large data-sets it is also crucial to minimize the
cost of any auxiliary storage. Beyond linear storage in the size t of
the output, RecursiVeJT keeps a storage proportional to the bound-
ary of the mesh. Overall the auxiliary storage is O(t + n213).

2
4
8
16
32

relative to the sequential case is reported in figure 5, compared to
the ideal l i a r speedup (top line in the chart).

1.9754 1.9801 1.9988 1.9993
3.7633 3.9168 3.9445 3.8986
7.4461 7.6365 7.3503 7.0672
13.949 15.457 14.302 12.864
26.465 28.460 27.132 20.797

I N P I mIP I Rho I Engine I Foot I I 64x64~64 I 128x128~128 I 256x256~110 I 125x255~176 I
I 1 I 1.oooO I 1.oooO I 1.oooO I 1.oooO I

Table 1: Performance results for four sample data-sets. The values
given are the speedups achieved in computing the ACT on NP pro-
cessors as compared to the case =I. The ideal speedup would be
NP t imes faster.

6 Practical Results

This section reports some practical results from our implementation
of the the two algorithms discussed in Sections 4 and 5. We first
present an example of the Augmented Contour Tree of the scalar
field obtained for a simple molecular data-set (methane) that shows
surprisingly intricate topological structures. Next we compare the
timings for the computation on data-sets of five different sizes.

M0th.W. We consider the topological analysis of a small scalar
field computed by an ab initio simulation conditions for the
methane molecule. We have computed the ACT and displayed it
using the graph drawing tool graphviz [a. The top portion of this
graph is shown in figure 1, along with several isosurfaces, and their
corresponding points in the ACT. We focus on this portion of the
dataset since it is kwwn that the simulation becomes less reliable
at lower densities.

The Methane dataset, which is on a 32x32~32 rectilinear grid,
is the simplest m-trivial dataset we explored. It is a nice exam-
ple, since the visualization of the tree is possible by conventional
means. This gives us a good way of exploring the possibilities of
using the ACT as an interface for data understanding. We see from
the isosurfaces (b), (c) and (d) that there is useful information sum-
marized in the ACT which is not obvious from the visualization.
The isosurfaces (b) and (c) can be seen immediately to have /31= 6
and /31 = 18 respectively, which implies that their respective genus
g = 3 and g = 9 since g = p1/2 for closed surfaces. In the iso-
surface (d) the initial visualization shows a single surface, whereas
the ACT shows 2 distinct components. Only after adding a clip-
ping plane the second component is shown to be enclosed within
the first.

Performance. We have implemented in parallel the divide ami
conquer ACT algorithm on a shared memory platform. This is
simply done by creating at each recursion two processes that com-
pute join and split trees for each half of the mesh. The recursion
become sequential as soon as the desired number of processes is
reached. Table 1 summarizes running times for four data-sets of
sizes scaling from thousands to millions of vertices. The speedup

Figure 5 Practical speedups obtained in the parallel implementa-
tion for four datasets of different sizes, compared with the ideal
linear speedup.

One can see that the speedup obtained in the parallel implemen-
tation scales nearly linearly. The coarse grained subdivision in our
method is easily implemented in parallel. Each processor becomes
responsible for a connected subregion of the mesh, and works com-
pletely independently of the other processes. The only communica-
tion necessary is for achildprocess toreturn the JT and ST that it
computed to its parent.

7 Conclusions

In this paper we have introduced two schemes for the computation
of the ACT for scalar fields &lined on simplicial meshes and on
rectilinear grids. The first scheme is an extension of the algorithm
proposed in [3] with the computation of the Betti numbers.

The second contribution is a divide and conquer scheme for rec-
tilinear grid domains. The complexity of this second scheme is
improved further to O(m + t log n) where t is the number of crit-
ical points in the mesh. Moreover we demostrate good practical
scalabiity of a simple parallel implementation of this algorithm.

The comparison between the two schemes is interesting even if
they apply to different classes of inputs. In particular the divide
and conquer approach seems to present several advantages espe-
cially for the processing of large data-sets. For instance, the auxil-
iary storage is kept as low as O(n213 + t). In contrast the original
scheme can have O(n) auxiliary storage since the union find pro-

cessing needs to maintain auxiliary information on a set of vertices
as large as the largest isosurface in the mesh.

In principle there seem to be no major problems preventing
the application of the divide and conquer scheme to unstructured
meshes but further investigation is necessary to verify if the same
performance benefits can be guaranteed in general.

The simple task of drawing the CT has become a major problem.
For data-sets that we have successfully processed we already obtain
trees that current graph drawing tools cannot hade . Still we plan
to work on data-sets that are orders of magnitude larger. In such
cases the development of interfaces that display the CT will present
a major challenge.

References

[l] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore.
The contour spectrum. In Roni Yagel and Hans Hagen, edi-
tors, IEEE Visualization $7, pages 167-175. IEEE, November
1997.

[2] Thomas Banchoff. Critical points and curvature for emmbed-
ded polyhedra. Differential Geometery, 1(1):245-256, 1967.

[3] Hamish Carr, Jack Snoeyink, and Ulxike Axen. Computing
contour trees in all dimensions. Computational Geometry
Theory andApplications, 2001. To Appear (extended abstract
appeared at SODA 2000).

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Zntduction
to Algorithms. ha Press, Cambridge, MA, 1990.

[5] Mark de Berg and Marc J. van Kreveld. Trekking in the a l p
without freezing or getting tired, Algorithmica, 18(3):30&
323, July 1997.

n Q’ *A4 chf

Figure 6 (a) 2D bilinear function. The saddle point s is marked
with the symbol 0. The horizontal line I, and the vertical line I,
have constant function value and intersect at s. The orientation of
the edges of the rectangles A,B,and C is along growing F . (b)
Split trees of F restricted to the rectangles A, B and C. Bm is the
minimum between B,l and Bm2.

Appendix
We consider the problem of computing the merge and split trees
for a cell with a trilinear interpolant. Our analysis is limited to the
split tree since the join tree is computed symmetrically. We show
that in the 2D case there are only two possible split trees and in 3D
there are only four possible split trees. In both cases the topology
of the split tree is completely determined by the number of maxima
present in the cell.

Bilinear lnterpolant on a Rectangle
Consider abilinear function F : R2 + R. The analytical definition
of F and its gradient V F is as follows:

F (x , y) = a x y + b x + c y + d , (4)

[6] John Ellson, Emden Gansner, Elefthenos Koutsofios, John
Mocenigo, Stephen North,, and Gordon Woodhull. Graphviz.
AT&T Research

where a, b, c, d are real numbers. Since aF/ax, and aF/ay, are
linear functions it is not Dossible to have a local maximum or min-
imum for finite values df x and y. Imposing V F = 0 one finds

= -c/a, and 9 = -b/a. More-
over, F is constant along the vertical line l, : x = -c/Q, and the

http: //m.research.att.com/-north/graphviz/. the unique saddle point for

[7] J. Milnor. Morse Theory, volume 51 ofAnnals ofMathematics
Studies. Princeton University Press, 1963.

[SI Valerio Pascucci. On the topology of the level sets of a scalar
field. In 12th Canadian Conference on Computational Geom-
etry, pages 141-144, August 2001.

[9] Eric Schwegler, Giulia Galli, and Francois Gygi. Water under
pressure. Physical Review Letters, 84(11):2429-2432,2000.

[lo] Sergey P. Tarasov and Michael N. Vyalyi. Construction of
contour trees in 3d in o(n log n) steps. In Proceedings of
the fourteenth annual symposium on Computational geome-
try, pages 68-75, Minneapolis, June 1998. ACM.

[ll] M. van Kreveld, R. van &strum, C. Bajaj, V. Pascucci, and
D. Schikorc. Contour trees and small seed sets for iso-
surf- traversal. In Proceedings of the 13th International
Annual Symposium on Computational Geometry (SCG-97),
pages 212-220, June 1997. Extended version. Techincal re-
port UCRL-JC-132016 Lawrence Livermore National Labo-
ratory.

-
horizontal line I, : y = -b/a. Since aF/ax is not a function of
x the restriction Fly=con.t of F to any line parallel to the x axis
has constant gradient. The gradient of Fly=con.t on all the lines
above I, is anti-parallel to the gradient of Fly=const on all the lines
below I, (see Figure 6). Similarly, I, separates the vertical lines
where Flz=const has upward gradient from those with downward
gradient.

Fact 1 There is exactly one saddle point s of F in the plane.

Fact 2 nte function F is constant on the line I , orthogonal to the
x and on the line I , orthogonal to the y a i s , where I , intersects I ,
at the saddle point s of F.

We analyze the restriction of F to axis aligned rectangles. Since
F is hea r along each line parallel the coordinate axis we can mark
each edge of a square with respect to the direction of increasing
values of F. Figure Ha) shows the three Werent types of squares
that one can have with respect to the orientation of their edges. A
square of type A has each pair of opposite edges with parallel ori-
entation. Therefore A cannot intersect I, or I,. This type of square
has one maximum AM and one minimum A, for FIA. A square
of type B has both pair of opposite edges with anti-parallel orien-
tation. Therefore B intersects both I, and I,. The saddle point s

Figure 7: Possible configurations of split tree for a trilinear inter-
polant restricted to and axis aligned parallelepiped. One the left
of each tree there are one or two examples of corresponding paral-
lelepipeds. (a) One maximum. (b) ' h o maxima. (c) Three max-
ima. (d) Four maxima. (e) Split tree with four maxima that cannot
be constructed.

must be inside B because it is at the intersection between I, and
I , . All four vertices of B are extrema (two maxima and two min-
ima) of FIB. In the third type of square C one pair of opposite
edges are parallel while the other pair are anti-parallel. Thus, C
must intersect either I, or I,, and Flc has one maximum and one
minimum.

Fact 3 The bilinearfunction F restricted to an axis aligned rectan-
gle can have only one or two maxima. The maxim can be located
only at non-adjacent vertices.

Figure 6(b) shows how the split trees of FIA and of Flc are
both single lines connecting the minimum to the maximum. The
split tree of FIB has one line that connects the lower minimum to
the saddle s. At s the split tree of FIB bifurcates into two lines
connecting s to the two maxima

Trilinear Interpolant on a Parallelepiped
We extend our analysis to the trilinear case and show how to com-
pute the shape of the split and merge trees for a cube on the basis
of the orientation of its edges and the function value of the even-
tual body saddle points. The general formulation of the trilinear
interpolant is:

F(x, y, z) = axyz + bxy + cxz + dyz+ ex +gy + hz + k, (5)

with gradient:

1 e + by + cz + ayz [h + cx + dy + axy
V F = g + b x + d z + a x z .

It is easy to see that restricting (5) to any plane orthogonal to
a coordinate axis (for example of equation x = m s t) yields the
bilinear function of type (4). Therefore there is no local minimum
or maximum of F . Solving V F = 0 we h d two critical points of
COordinateS:

Figure 8 Impossible configurations that would be necessary to al-
low the construction of a split tree shown in Figure 7(e). (a) 3D
view. (b) projection onto the x y plane.

These critical points are both saddles (of indices 1 and 2).

Fact 4 There are at most two critical points (both saddles) in E

We next consider the restriction of F to an axis aligned paral-
lelepiped P and mark its edges with the direction of i?lcreasig F .
The restriction of F to any face of P is the bilinear interpolant dis-
cussed in the previous section, therefore facts 4 and 3 imply that
one can have maxima of FIp only at its vertices. Moreover, each
face of P can have only two maxima so that the greatest number
of maxima of FIp is four. Figure 7 shows the five distinct types
of split trees that can be built with up to four maxima. We show in
the following that the last type is not consistent with the topology
of the trilinear interpolant.

Fact5 The split tree of FIp cannot have the topology of Fig-
ure 7(e).

PIT& Assume that the tree of Figure 7(e) is a valid split tree
for some FIp with maxima M1, M2, M3 and M4. This means
that there exist an isovalue w such that the region of P with F
greater than w is partitioned into two connected components R1
(containing M1 and M2) and R2 (containing M3 and M4), as
shown in Figure 8(a). Since R1 is connected we can find a line I1
that connects M1 to M2 within R1. Similarly we find a line I2 that
connects M3 to M4 within R2.

Let's call S1 the front square containing the maxima of R1, and
S2 the back square containing the maxima of R2 (S1 and S2 must
be opposite faces of P). We assume, without loss of generality, that
S1 and S2 are orthogonal to the z axis. We consider the parallel
projection P along the z axis, onto the x y plane. The images I : , I:
of I I , I2 must intersect in P' (projection of P) because they connect
the two pairs of vertices. Their intersection point r' = I: n I: is
the image of aray r that is parallel to the axis z and that intersects
both I 1 and 22 within P. By construction we have that F > w
for q1 = r n I1 and for q2 = r n L . Moreover, since R1 is not
connected with R2, there must be a point q on r, between q1 and
42, where F < w. Along r the value of F first decreases from
F(q1) to F(q), and then increases from F(q) to F(q2). But in a
trilinear function the value of F must be monotonic along any line
parallel to an orthogonal axis. Thus we have a contradiction, since
we have shown that F is not monotonic along r , which is parallel
to the z axis. 0

d(ae - bc) f 6
X = , y = a(bc - ae)

c(ag - bd) f 6 b(ah - cd) f 6 h conclusion we can state the following: ,I = a(cd - ah) '
Theorem 1 The topology of the split tree of FIp is completely &- a(bd - as)

where the term 6 is either added in all expressions or subtracted
in all expressions, and A is:

A = (bc - ae)(bd - ag)(cd - ah).

termined b>, the count of its local maxim

The important practical consequence of this theorem is that we
can precompute four templates of split trees and for each element

in the mesh we select the appropriate template simply from the ori-
entation of the edges. Simple numerical computations allow one to
determine the specific values of the saddles where the merge occurs.

